
i

SELF SERVICE PORTAL FOR

MOBILE APPLICATION

DEVELOPMENT

Project Report Submitted in Partial Fulfilment of the Requirements

for the Degree of

Bachelor of Technology

in

Computer Science and Engineering

Submitted by

Prasanna Natarajan: 1410110298

Under the Supervision of

Mathew Basil Thomas

Senior Manager, IT Development,

Des_Mob_Exp_Svcs_In

Department of Computer Science and Engineering

May, 2018

ii

Declaration

I declare that this written submission represents my ideas in my own words and where others' ideas

or words have been included, I have adequately cited and referenced the original sources. I also

declare that I have adhered to all principles of academic honesty and integrity and have not

misrepresented or fabricated or falsified any idea/data/fact/source in my submission. I

understand that any violation of the above will be cause for disciplinary action by the University

and can also evoke penal action from the sources which have thus not been properly cited or from

whom proper permission has not been taken when needed.

Name of the Student _____________________ Signature and Date _________________

iii

Acknowledgements

The internship opportunity I had with Dell EMC was a great chance for learning and professional

development. I am also grateful for having a chance to meet so many wonderful people and

professionals who led us through this internship period.

I take this opportunity to express my deepest gratitude to Mathew Basil Thomas, Senior

Manager, Development at Dell EMC who in spite of being busy with his duties, took time out to

hear, guide and keep me on the correct path and allowing me to carry out my project at their

esteemed organization.

I wish to express my sincere gratitude to Dr. Debopam Acharaya, HoD and Associate Professor,

CSE Department, SNU for continuously providing me support and updates about the project

expectations for the entire duration of the project.

The work could not have been possible without the support of Danny, Product Owner and

Ashitha, Scrum Master. I would also take this opportunity to thank Sankar Narayanan, Mentor

for guiding me throughout the project.

Also, I thank Shourya Pratap Singh, Sneha Agarwal, Sneha Reddy and Harshit Anand for being

wonderful team members.

Lastly, I thank my parents and my friends for their support.

iv

Table of Contents
Abstract ... 1

1. Introduction ... 2

1.1. Problem Definition ... 2

1.2. Problem Overview/Specification ... 2

1.2.1. Project Description.. 2

1.2.2. Deliverables .. 2

1.2.3. Key Metrics ... 3

1.3. Hardware Specifications .. 3

1.4. Software Specifications .. 4

1.4.1. Portal ... 4

1.4.2. Middleware and Database ... 4

1.4.3. Build Server and Mobile App Services .. 5

1.4.4. Generated Mobile Application .. 6

1.4.5. Other Software .. 6

2. Literature Survey/Related Works ... 7

2.1. Existing Solutions .. 7

2.1.1. Adobe XD ... 7

2.1.2. Kinetise ... 7

2.1.3. Kony .. 7

2.1.4. Eachscape .. 8

2.1.5. Thunkable ... 8

2.1.6. Shoutem .. 8

2.1.7. Appypie ... 8

2.1.8. Appgyver... 9

2.1.9. Bizness Apps ... 9

3. Requirement Analysis ... 10

3.1. Given Requirements ... 10

3.2. Requirement Gathering .. 10

3.3. Functional Requirements.. 11

3.4. Non-functional requirements.. 12

3.5. Scope of the project .. 12

4. Feasibility Study ... 13

v

4.1. Solution 1 – Desktop Application .. 13

4.1.1. Description .. 13

4.1.2. Technical Feasibility - Infeasible .. 13

4.1.3. Operational Feasibility – Feasible .. 13

4.1.4. Organizational Feasibility – Feasible .. 13

4.1.5. Overall Viability – Not Viable .. 13

4.2. Solution 2 – Mobile Application .. 14

4.2.1. Description .. 14

4.2.2. Technical Feasibility - Feasible .. 14

4.2.3. Operational Feasibility – Infeasible .. 14

4.2.4. Organizational Feasibility – Feasible .. 14

4.2.5. Overall Viability – Not Viable .. 14

4.3. Solution 3 – Web Application .. 15

4.3.1. Description .. 15

4.3.2. Technical Feasibility - Feasible .. 15

4.3.3. Operational Feasibility – Feasible .. 15

4.3.4. Organizational Feasibility – Feasible .. 15

4.3.5. Overall Viability – Viable ... 15

4.4. Recommended solution for further analysis... 15

5. System analysis and design ... 16

5.1. Use Case Diagram (Fig.5.1) ... 16

5.2. Activity Diagram .. 17

5.3. Dataflow Diagram .. 19

5.3.1. Level 0 .. 19

5.3.2. Level 1 .. 19

5.4. Database Schema (Fig 5.5)... 21

5.5. Class Diagram (Fig 5.6) ... 22

5.6. Architecture .. 26

5.6.1. HLA (Fig 5.7) ... 26

5.6.2. The UI Module .. 26

5.6.3. The Controller Module ... 26

5.6.4. The Build server .. 27

5.7. Threat Modeling Diagram (Fig 5.8) ... 27

vi

6. Implementation ... 28

6.1. Methodology Used ... 28

6.1.1. Scrum Framework ... 28

6.1.2. Extreme Programming (XP) ... 29

6.2. Sprint-wise progress ... 30

6.2.1. Sprint 1 (19/02/18 – 02/03/18) .. 30

6.2.2. Sprint 2 (05/03/18 – 16/03/18) .. 31

6.2.3. Sprint 3 (19/03/18 – 30/03/18) .. 31

6.2.4. Sprint 4 (02/04/18 – 13/04/18) .. 32

6.2.5. Sprint 5 (16/04/18 – 04/05/18) .. 33

6.3. Templates ... 34

6.3.1. List of Templates .. 34

6.4. Components .. 36

6.4.1. List of Components ... 36

7. Product Release ... 73

7.1 Deployment .. 73

Screenshots: .. 73

7.2 Business use case 1 – Spaces Chat (Mobile Experience Team) 80

7.2.1 Introduction ... 80

7.2.2 Features ... 80

7.2.3 Screenshots: .. 80

7.3 Business use case 2 – Onboarding App (HR) .. 82

7.3.1 Introduction ... 82

7.3.2 Features ... 82

7.3.3 Screenshots: .. 82

7.4 Business use case 3 – Operations Dashboard (Operations Team) 84

7.4.1 Introduction ... 84

7.4.2 Features ... 84

7.4.3 Screenshots ... 84

8. Summary ... 86

9. Conclusion .. 86

10. Scope for future work .. 87

Reference .. 89

vii

List of Tables

Table Name Page Number

(1.1) List of software used for development of the portal 4

(1.2) List of software used for the development of the middleware layer 5

(1.3) List of software used in development of build server and the mobile

application

5

(1.4) List of other software used 6

(6.1) Property form for Login component 37

(6.2) Property form for List Catalogue component 40

(6.3) API details for list content 42

(6.4) API definition for text description view 45

(6.5) API definition for Audio support 46

(6.6) API definition for video support 48

(6.7) API definition for graph support in list 49

(6.8) API definition for graph 50

(6.9) Property form for Simple List component 56

(6.10) API definition for text description 58

(6.11) API definition for text description without download and share 61

(6.12) API definition for Audio support 62

(6.13) API definition for Video support 63

(6.14) API definition for graph support 64

(6.15) API definition for graph 65

(6.16) Property form for Chatbot component 69

(6.17) API definition for Chatbot 71

(6.18) Property form for Preferences component 72

viii

List of Figures

Figure Name Page Number

(5.1) Use case diagram 16

(5.2) Activity Diagram 18

(5.3) Data Flow Diagram Level 0 19

(5.4) Data Flow Diagram Level 1 20

(5.5) Database Schema 21

(5.6) Class Diagram 25

(5.7) High Level Architecture 26

(5.8) Threat Modeling Diagram 27

(6.1) Gantt chart 30

(6.2) Blank Template 35

(6.3) Sidebar Template 34

(6.4) Tabs Template 35

(6.5) Web App Template 35

(7.1) Landing Page of EZBuild 73

(7.2) App Dashboard 74

(7.3) Editor Page with login module 75

(7.4) Editor Page with simple list view component 75

(7.5) Editor Page with preferences component 76

(7.6) Editor Page with Tabs screen 76

(7.7) Build start 77

(7.8) Setup the project 77

(7.9) choose which platform to build for 78

(7.10) Build for the chosen platform 78

(7.11) Download and finish 79

(7.12) Chatbot for Spaces India 80

(7.13) Chatbot answering with directions 81

(7.14) Side menu for spaceschat 81

(7.15) Side Menu in HR Onboarding app 82

(7.16) List of candidates 83

(7.17) Description of candidates 83

(7.18) List of servers for operations app 84

(7.19) Graphs for constant monitoring of server health 85

ix

List of Symbols and Abbreviations

Abbreviation Full Form

RMADP Rapid Mobile Application Development Platform

SSP Self Service Portal

PCF Pivotal Cloud Foundry

API Application Programming Interface

REST Representational State Transfer

JSON JavaScript Object Notation

JDK Java Development Kit

VM Virtual Machine

SDK Software Development Kit

JS JavaScript

UI User Interface

CSS Cascading Style Sheets

PHP Hypertext Preprocessor

IPA iPhone application

APK Android application package

PaaS Platform as a Service

1

Abstract

In this project, I developed an Innovative Rapid Mobile Application Development Platform

(RMADP) which is focused on enabling business teams to develop mobile apps without

coding. From this portal, users will be able to create simple mobile applications by just

dragging and dropping different GUI components and setting the functionalities of each as

per the requirement of the application. This portal provides the user with Android App

Executable (.apk) and iOS App Executable (.ipa).

The primary goal of this project was to enable at least 3 business teams with no programming

experience, to develop mobile apps through this self-service portal, which was successfully

fulfilled by end of this project.

For the purpose of this document, a simple mobile application is one that does not involve

graphics-intensive applications and applications that exploits the native sensors of a mobile

device.

2

1. Introduction

According to Statista [1], by the year 2019, the total number of Smartphones users

worldwide are expected to be 2.71 billion. With such a large user base, more mobile apps

will need to be developed to cater different needs.

With such a user base in mind, and making use of the ease employees will get with

mobility, Enterprises have started developing mobile apps for different departments ranging

from HR to finance to the datacenter.

1.1. Problem Definition

In a large organization like Dell with over 138,000 employees [2], a large number of

Enterprise apps are required to be built for a myriad of teams. The need for each app

varies based on the business team.

The Mobility Team of Dell becomes the bottleneck for all the mobile apps that get

built inside Dell. A solution was needed to enable teams to build their own mobile apps

without consulting the Mobility team or hiring/training developers for mobile

development.

1.2. Problem Overview/Specification

1.2.1. Project Description

Develop a Self Service Portal (SSP) for enabling any Dell team to develop

enterprise mobile apps without the knowledge of programming.

1.2.2. Deliverables

1. Develop and create a proposal for a self-service portal to help business teams build

mobile apps without coding.

3

2. Define the business and technical requirements and implement for iOS and

Android.

3. Develop Drag and Drop Capability for end user to pull together needed

components.

4. Develop Connector mechanism to help connect the UI components to backend

micro-services/databases.

5. Demonstrate the ability to develop an end to end iOS and Android app via the self-

service portal that has login capability, key UI components and connectivity to a

backend micro-service.

6. Develop a proposal for deployment and marketing.

1.2.3. Key Metrics

Enable at least 3 business teams with no mobile experience to develop mobile

apps through the self-service portal.

1.3. Hardware Specifications

 Apple Macintosh with Mac OS X 10.11 or higher (for build server)

 Pivotal Cloud Foundry (PaaS) with 4 VM instances to run PHP (for portal), Python

(for mobile app services), and Spring Boot (for middleware) Applications, and Maria

DB database server.

 Android phone with minimum Android 6.0 Marshmallow OS (for running mobile

apps).

 Apple iPhone with minimum iOS 9 (for running mobile apps).

4

1.4. Software Specifications

1.4.1. Portal

The list of software used for development of the portal are listed below in table (1.1)
(1.1) List of software used for development of the portal

Software/Technology Version License

HTML [3] 5 -

CSS [4] 4 -

JavaScript [5] ECMA Script 6 -

PHP [6] 5.6.35 PHP License

Apache Web Server [7] 2.4.33 Apache License 2.0

XAMPP for Windows [8] 5.6.35 GNU GPL

Bootstrap [9] 4.0.0 MIT License

Font Awesome [10] 5.0.7 Font Awesome Free License

JQuery-Confirm [11] 3.3.0 MIT License

JQuery [12] 3.2.1 MIT License

Popper.js [13] 1.12.9 MIT License

Vue.js [14] 2.5.13 MIT License

image-picker [15] 0.3.0 MIT License

devices.css [16] - MIT License

Intro.js [17] 2.8.0 Commercial / Open Source License

ddSlick [18] 2.0 -

JQuery UI [19] 1.12.1 MIT License

Holder.js [20] 2.9.4 MIT License

1.4.2. Middleware and Database

The list of software used for development of the middleware layer are listed below in
table (1.2)

5

(1.2) List of software used for the development of the middleware layer

Software/Technology Version License

Java Development Kit [21] 1.8.0_161 Oracle BCL

Eclipse [22] Oygen.3 Release 4.7.3 Eclipse Public License

Spring Tool Suite [23] 3.9.4 Eclipse Public License

Apache Maven [24] 3.3.9 Apache License 2.0

Gson [25] 2.8.2 Apache License 2.0

Okio [26] 1.14.0 Apache License 2.0

OkHttp [27] 3.10.0 Apache License 2.0

MariaDB [28] 10.1.26 GNU GPL

1.4.3. Build Server and Mobile App Services

The list of software used for development of the build server and mobile application are
listed below in table (1.3)

(1.3) List of software used in development of build server and the mobile application

Software/Technology Version License

Homebrew [29] 1.5.11 BSD License

GNU sed [30]

(stream editor)

4.4 GNU GPL

Node [31] 9.6.1 MIT License

Ionic Framework [32] 3.20.0 MIT License

Cordova [33] 8.0.0 Apache 2.0

License

Android Studio with SDK [34] 3.0 with Android SDK API 23 Freeware

XCode with Command Line

Tools [35]

9.3 Freeware with

open source

components

6

1.4.4. Generated Mobile Application

Uses following Ionic Plugins:

 In App Browser [36]

 Social Sharing [37]

 Chat.JS [38]

 Email Composer [39]

 File [40]

 File Transfer [41]

 Media [42]

 Streaming Media [43]

1.4.5. Other Software

The list of other software used for development are listed below in table (1.4)
(1.4) List of other software used

Software/Technology Version License

Git [44] 2.16.2 GNU GPL

Gitlab [45] - Commercial License

JIRA [46] - Commercial License

Postman [47] 6.0.10 Free Version

7

2. Literature Survey/Related Works

2.1. Existing Solutions

An extensive research on the available tools in the market was done to get a sense

of potential features for the portal. All the important findings are summarized below:

2.1.1. Adobe XD

Adobe XD [48] is a UI prototyping tool by Adobe. Its important features are:

1. It consists of GUI connect, which lets the user see the flow if the application.

2. User can drag and drop the components into a phone frame.

2.1.2. Kinetise

Kinetise [49] is a self-service web portal for making Android/iOS mobile

applications. Its important features are:

1. User can drag and drop the components into a phone frame.

2. The platform offers its own Content Management System (CMS).

3. The platform offers advanced user management features.

4. The platform offers map integration.

5. Data can be retrieved in tabular form.

6. User can even define the logic in Excel format.

7. This platform uses refresh policy for every second in which an event trigger like

repopulate components is provided.

8. Components like charts, QR codes are also provided.

9. This platform provides native code for making complex changes.

10. It provides support for external API’s like Facebook, Google Maps, Twitter,

YouTube etc.

2.1.3. Kony

Kony [50] is a self-service web portal for making Android/iOS mobile applications.

Its important features are:

1. Kony provides one-click deployment feature for both apps and services.

8

2. It has a marketplace with reusable components and apps.

3. Mapping of database and forms are done based on fields.

4. It provides native UI for Android and iOS.

2.1.4. Eachscape

Eachscape [51] is a self-service web portal for making Android/iOS mobile

applications. Its important features are:

1. Eachscape provides an option to own the source code.

2. This platform provides a separate powerful user management section.

2.1.5. Thunkable

Thunkable [52] is developed by MIT. It is a self-service web portal for making

Android/iOS mobile applications. Its important features are:

1. This tool provides control for voice commands.

2. It has community driven support.

2.1.6. Shoutem

Shoutem [53] is a self-service web portal for making Android/iOS mobile

applications. Its important features are:

1. Shoutem provides color based themes and layouts.

2. It provides splash screen component.

3. It allows for customization of individual components.

2.1.7. Appypie

Appypie [54] is a self-service web portal for making Android/iOS mobile

applications. It majorly supports pre-built templates and uses web technologies to

build the app. It provides trial version for 48 hours in editing for both iOS and

Android, after which the app cannot be edited unless a payment is made.

9

2.1.8. Appgyver

Appgyver [55] is a self-service web portal for making Android/iOS mobile

applications. Its important features are:

1. Appgyver has a brilliant UI drag and drop.

2. It visually defines the front end functionalities.

2.1.9. Bizness Apps

Bizness Apps [56] is a self-service web portal for making Android/iOS mobile

applications. Its important features are:

1. It consists of loyalty programs and reviews.

2. It also provides marketing options with a dedicating marketing advisor.

3. It has reseller community.

10

3. Requirement Analysis

3.1. Given Requirements

Develop a Self Service Portal for enabling teams to develop mobile apps. The

intern will play the role of a Software Developer.

3.2. Requirement Gathering

We took interview of employees from different business teams of the

organization to know and gather their requirements. During the interviews,

employees gave us an overview of what platforms they work on daily basis and ideas

on which simple mobile apps can be built.

Some of the question asked during the interviews are as follows:

1. Have you ever tried building an app before? Could you describe the step by step

process of how you approached and did it?

2. How much time did it take?

3. Have you used something similar (say X) before?

4. Does X solve your problem? Why not? Where does X fall short of your

expectation?

5. Do you have any idea about a mobile app that you would like to use on your team,

to increase productivity?

6. How fast do you need to get this app out to market?

7. What budget do you have to play with?

11

8. Does your app involve more than 10 screens/pages?

9. Will more than 100 users be using this app?

10. How frequently will you be modifying the app?

11. Does your application involve the usage of device hardware features (Camera,

GPS, and Accelerometers)?

12. Does your application need features like AR, VR, 3D touch or Contact details

retrieval?

13. What technical tools or platforms do you use majorly on a daily basis?

Information gathered during these interviews cannot be disclosed as per Dell EMC's

policies. Based on this information, key features for the portal were decided.

3.3. Functional Requirements

3.3.1 Portal

 Users should be able to create a new app

 User should be able to edit previously created app

 User should be able to delete existing app

 User should be able to drag and drop component

 User should be able to create screens

 User should be able to delete screens

 User should be able to build project

 User should be able to generate android apk and xcode project

 User should be able to download generated apk, zip

12

 User should be able to add side menu

 User should be able to add tabs

 User should be able to produce web app

3.4. Non-functional requirements

 Middleware server should balance load in build server

 Scripts if sent from frontend should not be saved in data base

 User should be restricted from building the app until every screen is in correct

state

 User should be shown different states of build process when he builds an app

3.5. Scope of the project

 All the generates apps are hybrid application

 No support for push notification

 Some native features (file transfer and handling, media support and sharing)

are only supported.

 Features which are hardware intensive (graphics rendering for games, access

to sensors etc.) are not supported.

13

4. Feasibility Study

4.1. Solution 1 – Desktop Application

4.1.1. Description

The self-service portal can be a desktop application that works on Windows/Mac.

4.1.2. Technical Feasibility - Infeasible

The portal can be easily built on cross-platform desktop application

development frameworks like electron. Integration with Dell EMC’s authentication

will be hard especially because Dell EMC’s authentication that is currently in place

works differently on different platforms and also does not support cross platform

apps.

4.1.3. Operational Feasibility – Feasible

All Dell EMC employees are given a laptop (a windows/mac machine),

therefore installation of this desktop portal shouldn’t be a problem. Moreover, with

the help of IT team, we can also force install this portal to make it available for all

Dell EMC employees.

4.1.4. Organizational Feasibility – Feasible

In Dell EMC, employees use windows or a mac machine. Since Dell EMC is a

large organization and not all app requests can be handled by the mobile experience

team, simple apps can be delegated to this portal. The Dell EMC mobile app standards

will still be maintained as the portal itself is maintained by the mobile experience

team.

4.1.5. Overall Viability – Not Viable

Since authentication will be a challenge and without it, the portal cannot

function properly this solution is not viable.

14

4.2. Solution 2 – Mobile Application

4.2.1. Description

The self-service portal can itself be a mobile application that works on Android/iOS.

4.2.2. Technical Feasibility - Feasible

The portal can be implemented using a cross-platform app builder like ionic.

Dell EMC also has authentication libraries readily available for these different

platforms.

4.2.3. Operational Feasibility – Infeasible

Dell EMC does not have any restrictions on personal smartphones that the

employees use. Therefore, it will be hard to make the employees use this portal with

the adherence to Dell EMC rules. Moreover, we have found out, through interviews

that employees would not like to use this portal from their mobile phones since

features like drag and drop will be difficult to use.

4.2.4. Organizational Feasibility – Feasible

Many Dell EMC employees use Android/iOS mobile devices. Since Dell

EMC is a large organization and not all app requests can be handled by the mobile

experience team, simple apps can be delegated to this portal. The Dell EMC mobile

app standards will still be maintained as the portal itself is maintained by the mobile

experience team.

4.2.5. Overall Viability – Not Viable

Since Dell EMC doesn’t have any control over employee personal devices,

the portal being there wouldn’t serve the company’s purpose.

15

4.3. Solution 3 – Web Application

4.3.1. Description

The self-service portal can be a web application.

4.3.2. Technical Feasibility - Feasible

The self-service portal can be built using web technologies. The Android/iOS

application that is generated out of this portal could be built using the Ionic

framework, a cross-platform mobile application builder. Dell EMC’s web

authentication system can be easily integrated with the web portal.

4.3.3. Operational Feasibility – Feasible

A Dell EMC employee can access this portal in any web browser which

supports JavaScript with any Dell EMC network registered device. Therefore it will

be easy to restrict access to if needed by Dell EMC to make a strict adherence to its

policies.

4.3.4. Organizational Feasibility – Feasible

Dell EMC is a large organization and not all app requests can be handled by

the mobile experience team, simple apps can be delegated to this portal. The Dell

EMC mobile app standards will still be maintained as the portal itself is maintained

by the mobile experience team.

4.3.5. Overall Viability – Viable

This is a viable solution.

4.4. Recommended solution for further analysis

Solution 3 seems to be the only viable solution for the reasons elaborated

above.

16

5. System analysis and design

“System analysis is a process of collecting and interpreting facts, identifying the

problems, and decomposition of a system into its components.” [57], in this section of the

report I have tried analyze the self-service portal.

I will try to analyze using various types’ system designs. These types are as follows:

5.1. Use Case Diagram (Fig.5.1)

 Actor: Dell Employee

Use Cases: Read about pivotal, Login, Read Terms and Condition, View previously

Created App, Edit Previously Created App, Delete Previously Created App, Create new

app, Set App Details, Create Screen, Delete Screen, Drag and Drop Component, Set

component properties, Delete Component, Generate APK, Generate IPA, Generate

Executable, Download Executable

(5.1) Use case diagram

17

5.2. Activity Diagram

The activity diagram is used to describe flow of activity through a series of actions. [58]

The Activity diagram (fig.5.2) is explained below.

When the user enters the URL of the portal, the Dell’s authentication happens and if

successful, the landing page opens.

Then the view Dash board is opened from the landing page where different tasks can

be performed:

 Delete previously created app

 Edit previously created app

 Create new app

For creating new app and editing existing apps user goes into editor page where new

screens can be created, existing screens can be modified and deleted. In the screens user

can drag and drop various components and modify their properties. After this, the changes

are saved and the respective ipa/apk of the app is generated and downloaded.

18

(5.2) Activity Diagram

19

5.3. Dataflow Diagram

5.3.1. Level 0

The DFD Level 0 shows a data system as a whole and emphasizes the way it

interacts with external entities [58]. Here (fig. 5.3) the Dell employee interacts with

the portal (EZBuild) by providing Login details, new app details, app to delete, app

to edit, app to download, screens and component properties. The portal responds back

with the app executable (apk/ipa).

(5.3) Data Flow Diagram Level 0

5.3.2. Level 1

The DFD Level 1 is more detailed than DFD Level 0. It breaks down the main

processes into sub processes. All the inputs from level 0 are carried forward to level

1 in a detailed form [58]. We have two database stores namely auth token and app

details. Auth token is accessed for authenticate user, create new app, delete app, edit

app, generate and download app. App details is accessed for create new app, app

editor, edit app, delete app and generate app. The following figure depicts level 1

DFD (fig. 5.4)

20

(5.4) Data Flow Diagram Level 1

21

5.4. Database Schema (Fig 5.5)

(5.5) Database Schema

22

5.5. Class Diagram (Fig 5.6)

In UML class diagram describes the structure of system by showing the system

classes, attributes, methods and associations between classes. [58]

Class diagram consists of 6 models:

1. User Model

2. Application Model

3. Component Model

4. Screen Model

5. Nav Model

6. Status model

User Model:

User Model consists attributes of user such as user id, last logged in and number of

visits.

Methods in User model:

 insert(UserModel customer);

 findByUserId(String userId);

 updateUserModelOnLogin(UserModel userModel);

They contain get and set methods for all the attributes.

Application Model:

Application model consists attributes of application such as application name,

package name, bundle id, application description, authentication type, default template,

user id, creation type, last modified, is Active, is Build, application id and landing screen.

Methods in Application Method:

 insert(ApplicationModel application);

 fetchApplicationWithId(int appId);

 fetchApplicationsForUser(String userId);

 updateForDelete(int appId);

23

 updateForBuiltApp(int appId, int value);

 updateForLandingScreen(int appId, int landingScreen);

 getSimpleDate(String date);

 isPackageExists(String packageName);

They contain get and set methods for all the attributes.

Component Model:

Component model consists attributes of component such as component id, screen id,

component type, component attributes, restful request type, URL, headers, data format

and post body.

Methods in Component Model:

 insert(ComponentModel component);

 fetchComponentWithId(int componentId);

 fetchComponentsForScreen(int screenId);

 update(ComponentModel component);

 delete(int componentId);

They contain get and set methods for all the attributes.

Screen Model:

Screen model consists of attributes of screen such as screen id, app id, screen type

and screen index.

Methods in Screen Model:

 insert(ScreenModel screen);

 fetchScreenWithId(int screenId);

 fetchScreensForAppWithId(int appId);

 delete(int screenId);

 getIndexById(int screenId);

 update(int screenId, String screenType);

They contain get and set methods for all the attributes.

24

Nav Model:

Nav model consists of attributes of nav bar such as nav item id, screen id, option

name, nav icon and option index.

Methods in Nav Model:

 delete(int navitemId);

 update(NavModel navmodel);

 insert(NavModel nav);

 updateNav(ArrayList<NavModel> inputList);

 getNavItemByScreen(int screenId);

They contain get and set methods for all the attributes.

Status Model:

Status model consists of attributes such as status message, status code and session id.

They contain get and set methods for all the attributes.

25

(5.6) Class Diagram

26

5.6. Architecture

5.6.1. HLA (Fig 5.7)

(5.7) High Level Architecture

5.6.2. The UI Module

This is the frontend portal visible to the user in the browser. It features drag and

drop functionality for components to be added to app screens, and has the option to

save, view, edit, delete or build app projects.

5.6.3. The Controller Module

This is the middle module that takes requests from portal, does all the database

operations on the MySQL server, and forwards the build request to the Build Module.

The database server stores all app project related information. Only the controller has

access to this server.

27

5.6.4. The Build server

This module sits on top of a Mac Server. It communicates with the controller

and generates the Android and iOS Apps.

5.7. Threat Modeling Diagram (Fig 5.8)

(5.8) Threat Modeling Diagram

Threat modeling diagram is used by Dell to analyze the security of this application. In the

figure above (fig 5.8) the browser is how an end user will access the portal. The browser will

contact the SSP portal, after Dell’s Authentication, which will in turn contact the Sprint Boot

Services for accessing the database and also contacting the Node.js server for building the

mobile application.

28

6. Implementation

6.1. Methodology Used

During the development of SSP, Pivotal Labs Methodology was strictly followed.

This methodology strongly promotes the following two:

6.1.1. Scrum Framework

The Scrum Framework was co-created by Jeff Sutherland and Ken Schwaber in

1993 [59]. The godfathers of Scrum, Takeuchi and Nonaka [60], defined Scrum as a

holistic approach for developing products with six characteristics: built-in instability,

self-organizing project teams, overlapping development phases, multi-learning,

subtle control, and organizational transfer of learning.

The Scrum Team is composed of [61]: Product Owner - responsible for

managing the product backlog and defining goals for each "Sprint" (time period of

approximately 2-4 weeks in which product increments are released), The

Development Team - across - functional and self-organizing team responsible for

developing and testing each product increments, and The Scrum Master - responsible

for ensuring that Scrum is being practiced correctly.

Every day before starting the work, the Development team holds a Daily

Scrum Standup - which is a 15 minutes event, in which the goals for next 24 hours

are set and the blockers are discussed.

Scrum Teams also use Scrum Board - a visual representation of the work flow,

broken down into manageable chunks called "Stories", with each story moved along

the board from the "backlog" (the to-do list), into work-in-progress (WIP), and on to

completion [62].

29

6.1.2. Extreme Programming (XP)

The Extreme Programming methodology adapts to rapidly changing

requirements [63]. It also advocates frequent incremental releases in short

development cycle (about 2 weeks). XP strongly promotes the following two

techniques during the development cycle:

6.1.2.1. Test Driven Development (TDD)

Unlike traditional development methods, where test cases are written after the

development process is ended. XP promotes TDD, in which development is driven

by automated unit test cases [64]. First of all unit test cases are created from

requirements (user stories in Scrum), then code is written such that the test cases pass.

6.1.2.2. Pair Programming

In Pair Programming, two programmers in a team work on the same story at

a time. As per TDD, one developer writes the test cases for each of units for the given

user story, then the other developer in the pair writes the code, while the first one

reviews the code. This technique not just ensures better quality code, but research

[65] has shown that this technique also yields happier and confident programmers.

During development of the project, the methodology followed was that after every

2 hours of programming, there is a 1-hour break, then pair switches their positions.

In this way, every developer gets to learn and work on different modules of the project

and also learn while writing quality code.

30

6.2. Sprint-wise progress

The entire project was carried out in sprints. The Gantt chart below (fig 6.1)
represents the timeline and the work done sprint wise.

 (6.1) Gantt chart

6.2.1. Sprint 1 (19/02/18 – 02/03/18)

6.2.1.1. User Stories

The following high level user stories were completed in sprint 1:

 High level architectural diagram

 Research on competing products in market.

 Research on possible use cases with EMC.

 Landing page.

 App Dashboard.

 Build and Download app executable.

 Create a new app project.

 App Editor Page including Screen view, create new screen, Delete screen,

components view, Mobile frame, drag and drop components, creation of components

and set properties.

6.2.1.2. Features built

The following features were implemented in sprint 1:

31

 Basic app dashboard with sections for portal advertisement and tutorial was made.

 A form for creating new app was created.

 Adding and deleting screens in the mobile frame.

 Login view component was created.

 Drag and drop feature for component was implemented.

6.2.1.3. Accomplishments

In sprint 1 version 0.1 of the portal was released.

6.2.2. Sprint 2 (05/03/18 – 16/03/18)

6.2.2.1. User Stories

The following high level user stories were completed in sprint 2:

 Interviewing people.

 App Editor Page including landing screen for app, save project.

 Sign in page.

 Services for adding screen to app and components to screen.

 Create file for postman.

6.2.2.2. Features built

The following features were implemented in sprint 2:

 Save feature for all the changes that is made in the editor page.

 Landing screen for the app.

 Sign in page for logging into the portal.

6.2.3. Sprint 3 (19/03/18 – 30/03/18)

6.2.3.1. User Stories

The following high level user stories were completed in sprint 2:

 Terms and conditions for sign in page.

 Delete existing project.

 Interviewing operations team.

32

 List box components (list with and without icon)

 Tooltips for properties form.

 Dell branding and theming for landing.

 Side menu template.

 Request to controller.

 UI changes in the home page.

 Include chat bot engine component.

6.2.3.2. Features built

The following features were implemented in sprint 3:

 Delete existing project.

 Include list view components (list with and without icon).

 Sign in page for logging into the portal.

 Tooltips for properties form.

 Side menu template that is to be selected while creating a new project.

Included chat bot engine component.

6.2.4. Sprint 4 (02/04/18 – 13/04/18)

6.2.4.1. User Stories

The following high level user stories were completed in sprint 2:

 Edit existing project.

 IPA generation.

 Turning website to an app.

 Graph view component.

 Audio/Video/Documents.

 Download and share.

 Preferences component.

 Storing of downloaded existing app project built.

 Dell secure authentication integration.

33

6.2.4.2. Features built

The following features were implemented in sprint 4:

 Edit existing project.

 IPA generation.

 Turning website to an app.

 Graph view component.

 Audio/Video/Documents.

 Download and share.

 Preferences component.

6.2.4.3. Accomplishments

In sprint 4, the version 0.2 of the portal was released.

6.2.5. Sprint 5 (16/04/18 – 04/05/18)

6.2.5.1. User Stories

The following high level user stories were completed in sprint 2:

 Deployment in Jenkins.

 Bottom navigation tab view.

 Help page overlay.

 Documentation.

 Secure authentication deployment and PCF deployment.

 Video tutorial in landing page.

 Admin dashboard for mobile experience team.

6.2.5.2. Features built

The following features were implemented in sprint 5:

 Bottom navigation tab view is included as a template that is to be selected while

creating a new project.

 Help page overlay that would ease the work of user for making the app in the editor

page.

34

 Video tutorial in landing page.

 Admin dashboard for mobile experience team that keeps track of all the details about

the users and the apps created.

6.2.5.3. Accomplishments

In sprint 5, the version 0.3 of the portal was released.

6.3. Templates

User can choose the template while creating a new app. The various types of templates that

are available for a user to choose from are blank, sidebar, tabs and web app.

6.3.1. List of Templates

6.3.1.1. Blank Template

 What is it?

This is a blank template. The user can choose this template

to start an application fresh without any other navigation

options like sidebar or tabs.

How to use it?

In the “create new app” screen, a user has to choose the

template as “blank” and then click on “create” button to start

an application with this template.

6.3.1.2. Sidebar Template

 What is it?

Sidebar template, also called the hamburger template is for left

side navigation.

How to use it?

User has to choose sidebar template while creating a new app.

Once user has chosen this template the editor page opens with

nav button. After creating the app user has to click on the nav

button before build. A dialog box opens for selecting the screen

(6.2) Blank
Template

(6.3) Sidebar Template

35

and filling the screen name. Screen with Login view cannot be selected.

6.3.1.3. Tabs Template

 What is it?

Tabs template is for bottom navigation.

How to use it?

User has to choose tabs template while creating the new app.

Once user has chosen this template the editor page opens with a

tab screen. User has options of choosing between 2 tabs, 3 tabs

or 4 tabs. User has to select the screen and icon. Also fill screen

name.

6.3.1.4. Web App Template

 What is it?

Web app template is for converting website into an app.

How to use it?

User has to choose web app template while creating a new app.

Once user has chosen this template, a dialog box opens asking

for URL which has to be converted to app. On clicking build

button, build dialogue box appears showing build process.

(6.4) Tabs Template

(6.5) Web App Template

36

6.4. Components

Components card contains various components. Here the user can drag the

components from the component card and drop into the mobile screen. One component

can be replaced by another component. Various type of components are Login view, List

catalogue, Simple list view, Chat bot and Preferences.

6.4.1. List of Components

6.4.1.1. Login View

What is it?

The login view is a component with a login form (username, password and a

submit button). If a user wants a login form in their application, then this component

can be used. It expects the user credentials which are typically in the form of

"username" and a matching "password", which helps in authentication for the

application that the user is building.

How to use it?

The login view is placed in the component card in the left hand side of the

editor page. If required, this component should be dragged from the component card

and dropped in the mobile screen. Each component has some properties associated

with it. The list of properties are present in the right hand side of the editor page and

will be visible when the component. The user is supposed to fill the property details

for each component. The list of properties of login view with their description and

examples are as follows (Table 6.1):

37

(6.1) Property form for Login component

S.NO Property

Name

Property

Description

Example Remarks

1. REST

Type

What kind of

HTTP request is

the API using? (

GET,PUT,POST

DELETE)

POST This field is

fixed as

POST in

v1.beta.

2. URL The URL where

the API that

handles login is

present.

http://emc/my-

server/api/2.2/sampleauth/signin

It is a

mandatory

field.

3. Data Type Type of data that

is expected to be

found in

API.(JSON,key

value pair,plain

text,XML)

JSON Type is

fixed as

JSON in

v1.beta..

4. Header Additional header

that user might

add with the API

call.

{"apiKey": "Jsfhjsdhfjs12dhf"} It is not a

mandatory

field (can

be left

blank) and

should be in

JSON

format.

5. Additional

Content

Data that user

might want to

{"User-Type": "manager"} It is not a

mandatory

http://emc/my-server/api/2.2/sampleauth/signin
http://emc/my-server/api/2.2/sampleauth/signin

38

send with API call

in POST Body.

field (can

be left

blank) and

should be

JSON

format.

6. Next

Screen

Here the screen

that comes after

the login screen is

selected.

Screen2 It is a

mandatory

field.

The API specifications are:

The API is expected to handle a post request with the following specifications:

Post Header

The header of the post request that is sent from the app has the following json (by default):

{

 "Content-Type":"application/json"

}

Any additional header that is provided in the properties form will be appended in this json.

Post Body

The body of the post request that is sent from the app has the following json:

{

 "username”: input_from_username_field",

39

 "password”: input_from_password_field"

}

Expected response:

The expected response from API:

1. For a successful authentication:

{

 "status”: “success”

}

2. For unsuccessful authentication:

{

 "status”:” failure”

}

6.4.1.2. List Catalogue

What is it?

In List Catalogue, list with icon, title, description and other data are present.

When we click on a particular list field the description page opens with icon, title,

description, back button, download button and share button. If a user wants a list view

with icon in their application, then this component can be used.

How to use it?

The list catalogue is placed in the component card in the left hand side of the

editor page. If required, this component should be dragged from the component card

and dropped in the mobile screen. Each component has some properties associated

with it. The list of properties are present in the right hand side of the editor page and

will be visible when the component. The user is supposed to fill the property details

40

for each component. The list of properties of login view with their description and

examples are as follows (Table 6.2):

 (6.2) Property form for List Catalogue component

S.NO Property

Name

Property

Description

Example Remarks

1. REST

Type

What kind of

HTTP request is

the API using? (

GET,PUT,POST

DELETE)

GET This field is

fixed as

GET in

v1.beta.

2. URL The URL where

the data is

present.*

http://emc/my-

server/api/2.2/sampleauth/signin

It is a

mandatory

field.

3. Data

Type

Type of data that

is expected to be

found in

API.(JSON,key

value pair,plain

text,XML)

JSON Type is

fixed as

JSON in

v1.beta.

4. Header Additional header

that user might

add with the API

call.

{"apiKey": "Jsfhjsdhfjs12dhf"} It is not a

mandatory

field (can be

left blank)

and should

be in JSON

format.

http://emc/my-server/api/2.2/sampleauth/signin
http://emc/my-server/api/2.2/sampleauth/signin

41

*The API specifications are:

The API will be expected to handle a GET request of the following specifications:

The general structure of the API is:

[

 {section_details},

 {section_details}

]

An Array containing different section_details.

If sections are not required then just have one element inside the array.

Each of these section details are of the format:

{

 "title”: Section_title"

 "values":[

 {list_content_for_this_section},

 {list_content_for_this_section}]}

Each of these list content will be of the format:

 1.For Description (with download and share)

{

"desc_type":"description" ,

"img":"url_of_any_image",

42

"title":"Sample_title",

"smallDesc":"Sample Description.",

"version”: “sample_version",

"description":"Sample Desc.",

"share":["share_section”, “share_section"],

"message”: “some message",

"subject”: “some subject",

"name”: sampleName",

"downloads”: “download_section"

}

 The details of this list content are as follows(Table 6.3):

 (6.3) API details for list content

 S.N

o

 List

content

 Description Example

 1. desc_type Type of

content that

will be

displayed in

the

description

page. For a

description

page this

field should

be

"description"

.

43

 2. img It is the icon

of each list

content that

is displayed

on the left

side of the

title.

 "http://images/DellEMC.png"

 3. title Name of the

list content.

 "DellEMC Mobile"

 4. smallDesc It is a

content that

will be

displayed

below the

title in the

list.

 "It is a mobile app"

 5. version It is a single

line content

that will be

displayed on

the right of

the title.

 6. descriptio

n

 It is the

description

of the

respective

list content

that will be

displayed

 "sample description"

http://images/DellEMC.png

44

once the list

content is

clicked.

 7. share url of the file

that is to be

shared.

Share can be

an array as

multiple files

can be

shared.

 "https://i.imgur.com/qBnk1Bh.jpg

"

 8. message Content that

will be

shared

 9. subject Title of the

content that

will be

shared

 10. name Name of the

file (if any)

with

extension.

 "name.pdf"

 11. download

s

 URL of the

file that is to

be

downloaded.

 "https://i.imgur.com/qBnk1Bh.jpg

"

 2. For Description (without download and share)

https://i.imgur.com/qBnk1Bh.jpg
https://i.imgur.com/qBnk1Bh.jpg
https://i.imgur.com/qBnk1Bh.jpg
https://i.imgur.com/qBnk1Bh.jpg

45

{

"desc_type":"description”,

"img":"url_of_any_image",

"title":"Sample_title",

"smallDesc":"Sample Description.",

"version":"sample_version",

"description":"Sample Desc."

}

The details of this list content are as follows (Table 6.4):

(6.4) API definition for text description view

 S.No List

content

 Description Example

1. desc_type Type of content that will be

displayed in the description

page. For a description page

this field should be

"description".

2. Img It is the icon of each list

content that is displayed on

the left side of the title.

"http://images/DellEMC.png"

3. Title Name of the list content. "DellEMC Mobile"

4. smallDesc It is a content that will be

displayed below the title in

the list.

"It is a mobile app"

5. version It is a single line content that

will be displayed on the right

of the title.

http://images/DellEMC.png

46

6. description It is the description of the

respective list content that

will be displayed once the list

content is clicked.

"sample description"

3. For Audio

{

 "desc_type":"audio",

 "img":"url_of_any_image",

 "title":"sample_title",

 "version":"sample_version",

 "smallDesc":"This is a sample audio",

 "url":"sample_url"

}

The details of this list content are as follows (Table 6.5):

(6.5) API definition for Audio support

 S.No List

content

 Description Example

1. desc_type Type of content that will be

displayed in the description

page. For a description page

this field should be "audio".

2. Img It is the icon of each list

content that is displayed on

the left side of the title.

"http://images/DellEMC.png"

http://images/DellEMC.png

47

3. Title Name of the list content. "DellEMC Mobile"

4. smallDesc It is a content that will be

displayed below the title in

the list.

"It is a mobile app"

5. version It is a single line content that

will be displayed on the right

of the title.

6. url It contains details about

audio.

"http://images/DellEMC.mp3"

1. For Video

{

"desc_type":"video",

"img":"url_of_any_image",

"title":"sample_title",

"version":"sample_version",

"smallDesc":"This is a sample video",

"url":"video_url"

}

The details of this list content are as follows (Table 6.6):

http://images/DellEMC.mp3

48

 (6.6) API definition for video support

 S.No List

content

 Description Example

1. desc_type Type of content that will be

displayed in the description

page. For a description page

this field should be

"description".

2. img It is the icon of each list

content that is displayed on

the left side of the title.

"http://images/DellEMC.png"

3. title Name of the list content. "DellEMC Mobile"

4. smallDesc It is a content that will be

displayed below the title in

the list.

"It is a mobile app"

5. version It is a single line content that

will be displayed on the right

of the title.

6. url It contains details about

video

"http://images/DellEMC..mp4"

2. For Graphs

{

 "desc_type":"graph",

 "img":"url_of_any_image",

 "title":"sample_title",

 "smallDesc":"sample description",

http://images/DellEMC.png
http://images/DellEMC..mp4

49

 "version":"sample_description",

 "description":"Sample Description",

 "graphs":[

 {graph_content},

 {graph_content}

]

}

The details of this list content are as follows (Table 6.7):

(6.7) API definition for graph support in list

 S.No List

content

 Description Example

1. desc_type Type of content that will

be displayed in the

description page. For a

description page this field

should be "description".

2. img It is the icon of each list

content that is displayed

on the left side of the title.

"http://images/DellEMC.png"

3. title Name of the list content. "DellEMC Mobile"

4. smallDesc It is a content that will be

displayed below the title in

the list.

"It is a mobile app"

5. version It is a single line content

that will be displayed on

the right of the title.

http://images/DellEMC.png

50

6. description It is the description of the

respective list content that

will be displayed once the

list content is clicked.

"sample description"

7. graphs It contains data of graph { "type": bar",

"url":

http://graphs/get/data/bar",

"title":"Bar Graph" }

Each of these graph content will be of the format:

{

 "type":"graph_type",

 "url":"url_of_the_data",

 "title":"sampleTitle"

}

The details of this graph content are as follows (Table 6.8):

 (6.8) API definition for graph

 S.No Graph

content

 Description Example

1. type Type of content that will be

displayed in the description

page. For a description page

this field should be

"description".

2. url It contains data of graph "http://graphs/get/data/bar"

http://graphs/get/data/bar
http://graphs/get/data/bar

51

3. Title Name of the list content. "DellEMC Mobile"

The URL should contain the data for the graph in the following format:

{

 "data": []

 "labels":[]

}

An example:

For making a list view with 2 videos, 2 audios

[

 {"title":"Video",

 "values":[

 {"desc_type":"video",

 "img":"url_of_any_image",

 "title":"sample_title",

 "version":"sample_version",

 "smallDesc":"This is a sample video",

 "url":"video_url"

 },

 {"desc_type":"video",

 "img":"url_of_any_image",

 "title":"sample_title",

 "version":"sample_version",

 "smallDesc":"This is a sample video",

52

 "url":"video_url"

 }

]

 },

 {"title":"Audio",

 "values":[

 {"desc_type":"audio",

 "img":"url_of_any_image",

 "title":"sample_title",

 "version":"sample_version",

 "smallDesc":"This is a sample audio",

 "url":"sample_url"

 },

 {"desc_type":"audio",

 "img":"url_of_any_image",

 "title":"sample_title",

 "version":"sample_version",

 "smallDesc":"This is a sample audio",

 "url":"sample_url"

 }

]

 },

 {"title":"Normal Description",

 "values":[

 {"desc_type":"description" ,

 "img":"url_of_any_image",

 "title":"sample_title",

 "smallDesc":"Sample Description.",

 "version":"sample_version",

 "description":"Sample Desc.",

53

 "share":["share_url","share_url"],

 "message":"some message",

 "subject":"some_subject",

 "name":"sampleName",

 "downloads":"download_url"

 },

 {"desc_type":"description" ,

 "img":"url_of_any_image",

 "title":"sample_title",

 "smallDesc":"Sample Description.",

 "version":"sample_version",

 "description":"Sample Desc.",

 "downloads":"download_url",

 "message":"some message",

 "subject":"some_subject",

 "name":"sampleName",

 "share":"share_url"

 },

 {"desc_type":"description" ,

 "img":"url_of_any_image",

 "title":"sample_title",

 "smallDesc":"Sample Description.",

 "version":"sample_version",

 "description":"Sample Desc."

 }

]

 },

54

 {"title":"Graphs",

 "values":[

 {"desc_type":"graph",

 "img":"url_of_any_data",

 "title":"sample_title",

 "smallDesc":"sample_description",

 "version":"sample_version",

 "description":"Sample Description",

 "graphs":[

 {"type":"graph_type",

 "title":"graph_title",

 "url":"url_of_any_data"

 },

 {"type":"graph_type",

 "title":"graph_title",

 "url":"url_of_any_data"

 }

]

 },

 {"desc_type":"graph",

 "img":"url_of_any_data",

 "title":"sample_title",

 "smallDesc":"sample_description",

 "version":"sample_version",

 "description":"Sample Description",

 "graphs":[

 {"type":"graph_type",

 "title":"graph_title",

 "url":"url_of_any_data"

55

 }

]

 }

]

 }

]

6.3.1.3 Simple List View:

What is it?

In List View, list with title, description and other data are present. When we

click on a particular list field the description page opens with icon, title, description,

back button, download button and share button. If a user wants a list view without

icon in their application, then this component can be used.

How to use it?

The list view is placed in the component card in the left hand side of the editor

page. If required, this component should be dragged from the component card and

dropped in the mobile screen. Each component has some properties associated with

it. The list of properties are present in the right hand side of the editor page and will

be visible when the component. The user is supposed to fill the property details for

each component. The list of properties of login view with their description and

examples are as follows (Table 6.9):

56

 (6.9) Property form for Simple List component

S.No Property

Name

Property

Description

Example Remarks

1. REST

Type

What kind of

HTTP request is

the API using? (

GET,PUT,POST

DELETE)

GET This field is

fixed as

GET in

v1.beta.

2. URL The URL where

the data is

present.*

http://emc/my-

server/api/2.2/sampleauth/signin

It is a

mandatory

field.

3. Data

Type

Type of data that is

expected to be

found in

API.(JSON,key

value pair,plain

text,XML)

JSON Type is

fixed as

JSON in

v1.beta..

4. Header Additional header

that user might add

with the API call.

{"apiKey": "Jsfhjsdhfjs12dhf"} It is not a

mandatory

field (can be

left blank)

and should

be in JSON

format.

*The API specifications are:

The API will be expected to handle a GET request of the following specifications:

http://emc/my-server/api/2.2/sampleauth/signin
http://emc/my-server/api/2.2/sampleauth/signin

57

The general structure of the API is:

[

 {section_details},

 {section_details}

]

An Array containing different section_details.

If sections are not required then just have one element inside the array.

Each of these section details are of the format:

{

 "title":"Section_title"

 "values":[

 {list_content_for_this_section},

 {list_content_for_this_section}

]

}

Each of these list content will be of the format:

1. For Description (with download and share)

{

"desc_type":"description",

"title":"DellEMC Mobile",

58

"smallDesc":"Sample Description.",

"version":"ver",

"description":"Sample Desc.",

"share": ["share_section","share_section"],

"message":"some message",

"subject":"some_subject",

"name":"sampleName.png",

"downloads":"download_section"

}

 The details of this list content are as follows (Table 6.10):

 (6.10) API definition for text description

 S.N

o

 List

content

 Description Example

 1. desc_type Type of

content that

will be

displayed in

the

description

page. For a

description

page this

field should

be

"description"

.

 2. title Name of the

list content.

 "DellEMC Mobile"

59

 3. smallDesc It is a

content that

will be

displayed

below the

title in the

list.

 "It is a mobile app"

 4. version It is a single

line content

that will be

displayed on

the right of

the title.

 5. descriptio

n

 It is the

description

of the

respective

list content

that will be

displayed

once the list

content is

clicked.

 "sample description"

 6. share URL of the

file that is to

be shared.

Share can be

an array as

multiple files

 "https://i.imgur.com/qBnk1Bh.jpg

"

https://i.imgur.com/qBnk1Bh.jpg
https://i.imgur.com/qBnk1Bh.jpg

60

can be

shared.

 7. message Content that

will be

shared

 8. subject Title of the

content that

will be

shared

 9. name Name of the

file (if any)

with

extension.

 "name.pdf"

 10. download

s

 URL of the

file that is to

be

downloaded.

 "https://i.imgur.com/qBnk1Bh.jpg

"

2. For Description (without download and share)

{

"desc_type":"description",

"title":"Help a Customer",

"smallDesc":"Sample Description.",

"version":"v1.1.4",

"description":"Sample Desc."

}

The details of this list content are as follows (Table 6.11):

https://i.imgur.com/qBnk1Bh.jpg
https://i.imgur.com/qBnk1Bh.jpg

61

 (6.11) API definition for text description without download and share

S.No List

content

Description Example

1. desc_type Type of content that will be displayed in the

description page. For a description page this field

should be "description".

2. title Name of the list content. "DellEMC

Mobile"

3. smallDesc It is a content that will be displayed below the title

in the list.

"It is a mobile

app"

4. version It is a single line content that will be displayed on

the right of the title.

-

5. description It is the description of the respective list content

that will be displayed once the list content is

clicked.

"sample

description"

3. For Audio

{

 "desc_type":"audio",

 "title":"DellEMC Mobile",

 "version":"1.1.12",

 "smallDesc":"This is a sample audio",

 "url":"sample_url"

}

The details of this list content are as follows (Table 6.12):

62

 (6.12) API definition for Audio support

S.No List

content

Description Example

1. desc_type Type of content that will be

displayed in the description page.

For a description page this field

should be "audio".

2. title Name of the list content. "DellEMC Mobile"

3. smallDesc It is a content that will be displayed

below the title in the list.

"It is a mobile app"

4. version It is a single line content that will be

displayed on the right of the title.

5. url It contains details about audio. "http://images/DellEMC.mp3"

4. For Video

{

"desc_type":"video",

"title":"DellEMC Mobile",

"version":"10.10.2018",

"smallDesc":"This is a sample video",

"url":"video_url"

}

The details of this list content are as follows (Table 6.13):

http://images/DellEMC.mp3

63

 (6.13) API definition for Video support

S.No List

content

Description Example

1. desc_type Type of content that will be

displayed in the description page.

For a description page this field

should be "description".

2. title Name of the list content. "DellEMC Mobile"

3. smallDesc It is a content that will be displayed

below the title in the list.

"It is a mobile app"

4. version It is a single line content that will

be displayed on the right of the

title.

5. url It contains details about video "http://images/DellEMC..mp4"

5. For Graphs

{

 "desc_type":"graph",

 "title":"DellEMC Mobile",

 "smallDesc":"Dell EMC Mobile is your companion for ",

 "version":"v3.4.4",

 "description":"Sample Description",

 "graphs":[

 {graph_content},

 {graph_content}

]

}

http://images/DellEMC..mp4

64

The details of this list content are as follows (Table 6.14):

(6.14) API definition for graph support

S.No List

content

Description Example

1. desc_type Type of content that will be

displayed in the description page.

For a description page this field

should be "description".

2. title Name of the list content. "DellEMC Mobile"

3. smallDesc It is a content that will be

displayed below the title in the

list.

"It is a mobile app"

4. version It is a single line content that will

be displayed on the right of the

title.

5. description It is the description of the

respective list content that will be

displayed once the list content is

clicked.

"sample description"

6. graphs It contains data of graph { "type": bar",

"url":

http://graphs/get/data/bar",

"title":"Bar Graph"

 }

Each of these graph content will be of the format:

http://graphs/get/data/bar

65

{

 "type":"bar",

 "url":"dellemc.com/apac/get/data/bar",

 "title":"sampleTitle"

}

The details of this graph content are as follows (Table 6.15):

 (6.15) API definition for graph

S.No Graph

content

Description Example

1. type Type of content that will be displayed in

the description page. For a description

page this field should be "description".

2. url It contains data of graph "http://graphs/get/data/bar"

3. title Name of the list content. "DellEMC Mobile"

An example:

[

 {"title":"Video",

 "values":[

 {"desc_type":"video",

 "title":"sample_title",

 "version":"sample_version",

 "smallDesc":"This is a sample video",

 "url":"video_url"

http://graphs/get/data/bar

66

 },

 {"desc_type":"video",

 "title":"sample_title",

 "version":"sample_version",

 "smallDesc":"This is a sample video",

 "url":"video_url"

 }

]

 },

 {"title":"Audio",

 "values":[

 {"desc_type":"audio",

 "title":"sample_title",

 "version":"sample_version",

 "smallDesc":"This is a sample audio",

 "url":"sample_url"

 },

 {"desc_type":"audio",

 "title":"sample_title",

 "version":"sample_version",

 "smallDesc":"This is a sample audio",

 "url":"sample_url"

 }

]

 },

 {"title":"Normal Description",

 "values":[

 {"desc_type":"description" ,

 "title":"sample_title",

67

 "smallDesc":"Sample Description.",

 "version":"sample_version",

 "description":"Sample Desc.",

 "share":["share_url","share_url"],

 "message":"some message",

 "subject":"some_subject",

 "name":"sampleName",

 "downloads":"download_url"

 },

 {"desc_type":"description",

 "title":"sample_title",

 "smallDesc":"Sample Description.",

 "version":"sample_version",

 "description":"Sample Desc.",

 "downloads":"download_url",

 "message":"some message",

 "subject":"some_subject",

 "name":"sampleName",

 "share":"share_url"

 },

 {"desc_type":"description" ,

 "title":"sample_title",

 "smallDesc":"Sample Description.",

 "version":"sample_version",

 "description":"Sample Desc."

 }

]

 },

68

 {"title":"Graphs",

 "values":[

 {"desc_type":"graph",

 "title":"sample_title",

 "smallDesc":"sample_description",

 "version":"sample_version",

 "description":"Sample Description",

 "graphs":[

 {"type":"graph_type",

 "title":"graph_title",

 "url":"url_of_any_data"

 },

 {"type":"graph_type",

 "title":"graph_title",

 "url":"url_of_any_data"

 }

]

 },

 {"desc_type":"graph",

 "title":"sample_title",

 "smallDesc":"sample_description",

 "version":"sample_version",

 "description":"Sample Description",

 "graphs":[

 {"type":"graph_type",

 "title":"graph_title",

 "url":"url_of_any_data"

 }

69

]

 }

]

 }

]

6.3.1.4 Chat Bot:

What is it?

A chat bot is a computer program which conducts a conversation via textual methods.

Such a bot is an automated system of communication with users. Training chat bot can be

done in two ways. One way is by providing URL in which training data is present. Other way

is by providing question and answers in training data. If a user wants Chat Bot in their

application, then this component can be used.

How to use it?

The Chat Bot is placed in the component card in the left hand side of the editor page.

If required, this component should be dragged from the component card and dropped in the

mobile screen. Each component has some properties associated with it. The list of properties

are present in the right hand side of the editor page and will be visible when the component.

The user is supposed to fill the property details for each component. The list of properties of

login view with their description and examples are as follows (Table 6.16):

 (6.16) Property form for Chatbot component

S.No Property

Name

Property

Description

Example Remarks

1. REST

Type

What kind of

HTTP request is

the API using? (

GET,PUT,POST

DELETE)

GET This field is

fixed as

GET in

v1.beta.

70

2. URL The URL where

the training data is

present.*

http://emc/my-

server/api/2.2/sampleauth/signin

It is a

mandatory

field.

3. Data

Type

Type of data that is

expected to be

found in

API.(JSON,key

value pair,plain

text,XML)

JSON Type is

fixed as

JSON in

v1.beta..

4. Header Additional header

that user might add

with the API call.

{"apiKey": "Jsfhjsdhfjs12dhf"} It is not a

mandatory

field (can be

left blank)

and should

be in JSON

format.

5. Training

Data

Data for training

chat bot is added.

{"What is SSP?": "Self Service

Portal"}

It is not a

mandatory

field (can be

left blank)

and should

be JSON

format.

*The API specifications are:

The API will be expected to handle a GET request of the following specifications:

Expected response from the API:

http://emc/my-server/api/2.2/sampleauth/signin
http://emc/my-server/api/2.2/sampleauth/signin

71

{

 "res":"The response from the chatbot"

 "isMe":"false"

 "image":"assets/imgs/chatbot.png"

 "time":"timestamp"

}

A description of the chatbot api is as follows (Table 6.17):

 (6.17) API definition for chatbot

S.No Content Description Example

1. res Reply that is expected from the

chat bot.

2. isME This field is always false. ---------

3. image Icon used for chat bot. Default

icon can be used but if a

customized icon is needed, one

can host the icon in the API.

"https://i.imgur.com/qBnk1Bh.jpg"

4. time Current time.

6.3.1.5 Preferences:

What is it?

Preferences page consists of Feedback, Help, Recommend and About section. If a

user wants Preferences in their application, then this component can be used.

How to use it?

The Preferences is placed in the component card in the left hand side of the editor

page. If required, this component should be dragged from the component card and dropped

in the mobile screen. Each component has some properties associated with it. The list of

properties are present in the right hand side of the editor page and will be visible when the

https://i.imgur.com/qBnk1Bh.jpg

72

component. The user is supposed to fill the property details for each component. The list of

properties of login view with their description and examples are as follows (Table 6.18):

(6.18) Property form for Preferences component

S.No Property

Name

Property

Description

Example Remarks

1. App

Description

It contains the

description of

the App.

EZ Build – This portal will

enable business teams to

develop simple mobile apps,

without deep knowledge of

programming. Through this

portal, you can easily drag and

drop different functionalities and

components into the application

as needed.

It is a

mandatory

field and can

be written in

plain text

format.

2. Help

Content

It contains the

steps on how

the SSP Portal

can be used.

Step 1: Drag the component in

the screen.

Step 2: Click on plus icon to add

the screens.

Step 3: Enter the property fields

of the component added.

It is a

mandatory

field and can

be written in

plain text

format.

73

7. Product Release

7.1 Deployment

The Self Service Portal was successfully deployed in Pivotal Cloud Foundry (PCF) with all

the required security and authentication features implemented.

Screenshots:

Some screenshots of the portal after deployment:

1. Landing Page (fig.7.1)

(7.1) Landing Page of EZBuild

74

2. List of Apps Page (fig.7.2)

(7.2) App Dashboard

75

3. Editor Page

3.1 With Login Module in the mobile screen (fig.7.3)

(7.3) Editor Page with login module

3.2 With a Simple List view in the mobile screen (fig.7.4)

(7.4) Editor Page with simple list view component

76

3.3 With a Preferences Page in the mobile screen (fig.7.5)

(7.5) Editor Page with preferences component

3.4 With a Tabs screen in the mobile screen (fig.7.6)

(7.6) Editor Page with Tabs screen

77

4. Build Dialog

4.1 Initializing Project (fig.7.7)

(7.7) Build start

4.2 Project Setup (fig.7.8)

(7.8) Setup the project

78

4.3 Choose Platform (fig.7.9)

(7.9) choose which platform to build for

4.4 Building Project (fig.7.10)

(7.10) Build for the chosen platform

79

4.5 Download Project and Finish (fig.7.11)

(7.11) Download and finish

80

7.2 Business use case 1 – Spaces Chat (Mobile Experience Team)

7.2.1 Introduction

As per our interview with the mobile experience team, we came up with components such

that one of their use cases could be fulfilled. So we made them make a chatbot app using the

self-service portal.

7.2.2 Features

The chatbot app called “Spaces Chat” lets a user find meeting rooms, library or the cafeteria

through a simple conversation. They can just ask questions like “Where’s the cafeteria?” or

“Where’s the meeting room A?”, and the chatbot will reply to them with directions to reach

that place. This app will save time for employees that they waste while navigating through

different rooms in big offices.

7.2.3 Screenshots:

7.2.3.1 Chatbot for Spaces India Application (fig.7.12)

(7.12) Chatbot for Spaces India

81

7.2.3.2 Chatbot giving directions (fig.7.13)

(7.13) Chatbot answering with directions

7.2.3.3 The Side Menu with preferences (fig.7.14)

(7.14) Side menu for spaceschat

82

7.3 Business use case 2 – Onboarding App (HR)

7.3.1 Introduction

As per our interview with the HR hiring team, we came up with components such that one

of their use cases could be fulfilled. So we made them make an onboarding app using the

self-service portal.

7.3.2 Features

It has a side menu with FTE, Intern and Contract as elements. These elements are list items

with icons. List items are divided into different sections based on time like one week ago,

this week, one week from now etc. Each list item comprises of description (details of each

employee like role, team, office, hiring manager), title (name of the employee), icon (image

of the employee) and version (date of joining).

7.3.3 Screenshots:

7.3.3.1 The Side Menu (fig.7.15)

(7.15) Side Menu in HR Onboarding app

83

7.3.3.2 The List View (fig.7.16)

(7.16) List of candidates

7.3.3.3 The List Details View (fig.7.17)

(7.17) Description of candidates

84

7.4 Business use case 3 – Operations Dashboard (Operations Team)

7.4.1 Introduction

As per our interview with the Operations hiring team, we came up with components such that

one of their use cases could be fulfilled. So we made them make an Operations Dashboard

using the Self Service Portal.

7.4.2 Features

It has a side menu with server health and email traffic as elements. List items are divided into

different sections based on location. For server health it has red and green pie cart. For

memory and disk space it has line graph (parameter vs time). For email traffic it has line

graph (number of mails vs time).

7.4.3 Screenshots

7.4.3.1 The Tabs view and the simple list view (fig.7.18)

(7.18) List of servers for operations app

85

7.4.3.2 The Description View for the simple list view (fig.7.19)

(7.19) Graphs for constant monitoring of server health

86

8. Summary

 A secure authentication was implemented for logging into the portal.

 Drag and drop feature was implemented for selecting the components into the

mobile screen.

 List of components present in portal were login view, list view with and without

icon, chat bot and preferences. Each of the component has properties associated

with it.

 List of templates present in portal were blank, side menu, tabs and web apps.

 Auto save feature was implemented.

 APK can be downloaded for android and zipped xcode project files for IOS.

 Helper overlay was also provided for user to ease their work.

9. Conclusion

The Project was successfully completed by end of the internship. The portal was deployed

in the production. Three different teams at the company were able to generate mobile apps

for their use cases. Both Dell 6 and Dell 4 employees can access the portal for making apps

and successfully generate the APK/IPA for their Android and IOS mobile phones.

87

10. Scope for future work

The Project was successfully completed by end of the internship. Three different teams

at the company were able to generate mobile apps for their use cases. Some of the future

works for this project can be:

1. Undo Feature

There can be an undo option in the editor.

2. Online Simulator:

An online web based simulator for iOS and Android can be made to preview and run

the created app instead of building, transferring and running it on an actual phone

every time.

3. Advanced Components:

More advanced drag-and-drop components like maps can also be integrated within

the editor.

4. Marketplace:

Already created apps can be put on a marketplace within the portal, where users can

reuse already created app projects and make their apps by modifying them.

5. Postman Integration:

Postman [47] is a popular tool used to test web services. The portal can have an option

to directly import Postman project file, and all the back-end capability can be directly

set to the components from the Postman project file.

6. Form component:

Add a new component to allow users to create forms with different form fields like

buttons, text area, check box etc.

7. Messaging Control:

Add a new component to allow user to communicate with other users using their own

backend services.

88

8. Automated Service Creation:

Build middleware layers between the current API endpoint and what is expected in

the portal by using a query language like GraphQL [66].

9. Map Component:

Add a map component to allow users to add functionalities like markers, navigation

etc.

10. Live Preview:

When the app is being made the user will be able to live preview the screens of the

actual app.

11. Generate Preview for Flow of Screens:

User will be able to view the flow/navigation of all the screens that is contained in

the app through a flow diagram.

89

Reference

[1] https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/

[2] https://www.sec.gov/Archives/edgar/data/1571996/000157199617000004/delltechn

ologiesfy1710k.htm

[3] http://w3.org/html

[4] http://w3.org/css

[5] http://developer.mozilla.org/en-US/docs/Web/JavaScript

[6] http://php.net

[7] http://httpd.apache.org

[8] http://www.apachefriends.org

[9] http://getbootstrap.com

[10] http://fontawesome.com

[11] http://github.com/craftpip/jquery-confirm

[12] http://jquery.com

[13] http://popper.js.org

[14] http://vuejs.org

[15] http://github.com/rvera/image-picker

[16] http://github.com/marvelapp/devices.css/

[17] http://github.com/usablica/intro.js

[18] http://github.com/prashantchaudhary/ddslick

[19] http://jqueryui.com

[20] http://holderjs.com

[21] http://www.oracle.com/technetwork/java/javase

[22] http://eclipse.org

[23] http://spring.io/tools/sts/

[24] http://maven.apache.org

[25] http://github.com/google/gson

[26] http://github.com/square/okio

[27] http://github.com/square/okhttp

[28] http://mariadb.org

https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.sec.gov/Archives/edgar/data/1571996/000157199617000004/delltechnologiesfy1710k.htm
https://www.sec.gov/Archives/edgar/data/1571996/000157199617000004/delltechnologiesfy1710k.htm
http://w3.org/html
http://w3.org/css
http://developer.mozilla.org/en-US/docs/Web/JavaScript
http://php.net/
http://httpd.apache.org/
http://www.apachefriends.org/
http://getbootstrap.com/
http://fontawesome.com/
http://github.com/craftpip/jquery-confirm
http://jquery.com/
http://popper.js.org/
http://vuejs.org/
http://github.com/rvera/image-picker
http://github.com/marvelapp/devices.css/
http://github.com/usablica/intro.js
http://github.com/prashantchaudhary/ddslick
http://jqueryui.com/
http://holderjs.com/
http://www.oracle.com/technetwork/java/javase
http://eclipse.org/
http://spring.io/tools/sts/
http://maven.apache.org/
http://github.com/google/gson
http://github.com/square/okio
http://github.com/square/okhttp
http://mariadb.org/

90

[29] http://brew.sh

[30] http://www.gnu.org/software/sed

[31] http://nodejs.org

[32] http://ionicframework.com

[33] http://cordova.apache.org

[34] http://developer.android.com/studio/index.html

[35] http://developer.apple.com/xcode

[36] https://ionicframework.com/docs/native/in-app-browser/

[37] https://ionicframework.com/docs/native/social-sharing/

[38] https://www.chartjs.org/

[39] https://ionicframework.com/docs/native/email-composer/

[40] https://ionicframework.com/docs/native/file/

[41] https://ionicframework.com/docs/native/file-transfer/

[42] https://ionicframework.com/docs/native/media/

[43] https://ionicframework.com/docs/native/streaming-media/

[44] http://git-scm.com

[45] http://gitlab.com

[46] http://www.atlassian.com/software/jira

[47] http://www.getpostman.com

[48] https://www.adobe.com/in/products/xd.html

[49] https://www.kinetise.com

[50] https://www.kony.com/products/appplatform

[51] http://eachscape.com

[52] http://thunkable.com

[53] http://www.shoutem.com

[54] https://www.appypie.com/no-coding-app-builder

[55] https://www.appgyver.com

[56] http://www.biznessapps.com

[57] https://www.tutorialspoint.com/system_analysis_and_design/system_analysis_and_

design_overview.htm

http://brew.sh/
http://www.gnu.org/software/sed
http://nodejs.org/
http://ionicframework.com/
http://cordova.apache.org/
http://developer.android.com/studio/index.html
http://developer.apple.com/xcode
https://ionicframework.com/docs/native/in-app-browser/
https://ionicframework.com/docs/native/social-sharing/
https://www.chartjs.org/
https://ionicframework.com/docs/native/email-composer/
https://ionicframework.com/docs/native/file/
https://ionicframework.com/docs/native/file-transfer/
https://ionicframework.com/docs/native/media/
https://ionicframework.com/docs/native/streaming-media/
http://git-scm.com/
http://gitlab.com/
http://www.atlassian.com/software/jira
http://www.getpostman.com/
https://www.adobe.com/in/products/xd.html
https://www.kinetise.com/
https://www.kony.com/products/appplatform
http://eachscape.com/
http://thunkable.com/
http://www.shoutem.com/
https://www.appypie.com/no-coding-app-builder
https://www.appgyver.com/
http://www.biznessapps.com/
https://www.tutorialspoint.com/system_analysis_and_design/system_analysis_and_design_overview.htm
https://www.tutorialspoint.com/system_analysis_and_design/system_analysis_and_design_overview.htm

91

[58] Rajib Mall, Fundamentals of Software Engineering. Phi Learning Private Limited,

India, 2003.

[59] Sutherland, J. The Scrum Papers: Nuts, Bolts, and Origins of an Agile Process, 2011,

January.

[60] Takeuchi. H and Nonaka. I, The new product development game, Harvard Business

Review, 1986, January.

[61] Sutherland. J and Schwaber. K, The Scrum Guide, 2013, July.

[62] https://www.cprime.com/2015/02/3-differences-between-scrum-and-kanban-you-

need-to-know/

[63] Beck. K, Extreme Programming Explained: Embrace Change, Addison-Wesley

Longman Publishing Co., Inc., Boston, MA,USA, 2000.

[64] Beck, Test Driven Development: By Example, Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA, 2002.

[65] Williams.L, Kessler.R.R, Cunningham.W and Jef-fries.R, "Strengthening the case for

pair programming", IEEE Softw. Vol 17, No. 4, pp. 19-25, July 2000.

[66] https://graphql.org/

https://www.cprime.com/2015/02/3-differences-between-scrum-and-kanban-you-need-to-know/
https://www.cprime.com/2015/02/3-differences-between-scrum-and-kanban-you-need-to-know/
https://graphql.org/

